COLLEGE ALGEBRA QUIZ

- (1) Given that f(x) = 3x 1, $g(x) = x^2 + 1$, and $h(x) = 4 x^3$, find $(f \circ g)(-1)$, $(h \circ f)(2)$, and $(g \circ g)(x)$. Solution: $(f \circ g)(-1) = 5$, $(h \circ f)(2) = -4$, and $(g \circ g)(x) = 3x^2 + 2$
- (2) Given that $f(x) = \frac{1}{x^2}$ and g(x) = 3 4x, find $(f \circ g)(x)$ and its domain. Then find $(g \circ f)(x)$ and its domain. Solution: $(f \circ g)(x) = \frac{1}{3-4x^2}$, domain: $(-\infty, \frac{3}{4}) \cup (\frac{3}{4}, \infty)$. $(g \circ f)(x) = 3 - \frac{4}{x^2}$, domain: $(-\infty, 0) \cup (0, \infty)$
- (3) Given, $f(x) = 4(2x-1)^3 + 7$, find h(x) and g(x) such that $f(x) = (h \circ g)(x)$. Solution: $(h \circ g)(x) = 4(2x-1)^3 + 7$ if $h(x) = 4x^3 + 7$, and g(x) = 2x - 1
- (4) For f(x) = 2x + 1 and $g(x) = \sqrt{x}$, find the domain of $(g \circ f)(x)$. Solution: $(g \circ f)(x) = \sqrt{2x + 1}$, domain: $[-\frac{1}{2}, \infty)$
- (5) The surface area, S, of a cone is given by the formula, $S = \pi r^2 + \pi r \sqrt{h^2 + r^2}$. If the height, h, is four times the radius, r, find the function S(r), the surface area as a function of the radius, and S(h), the surface area as a function of the height. Solution: $S(r) = \pi r^2 (1 + \sqrt{17})$ $S(h) = \frac{1}{4} \pi h^2 (\frac{1}{4} + \sqrt{1 + \frac{1}{16}})$

1

