COLLEGE ALGEBRA QUIZ

(1) Given that $f(x)=3 x-1, g(x)=x^{2}+1$, and $h(x)=4-x^{3}$, find $(f \circ g)(-1)$, $(h \circ f)(2)$, and $(g \circ g)(x)$.

Solution: $(f \circ g)(-1)=5,(h \circ f)(2)=-4$, and $(g \circ g)(x)=3 x^{2}+2$
(2) Given that $f(x)=\frac{1}{x^{2}}$ and $g(x)=3-4 x$, find $(f \circ g)(x)$ and its domain. Then find $(g \circ f)(x)$ and its domain.
Solution: $(f \circ g)(x)=\frac{1}{3-4 x^{2}}$, domain: $\left(-\infty, \frac{3}{4}\right) \cup\left(\frac{3}{4}, \infty\right)$.
$(g \circ f)(x)=3-\frac{4}{x^{2}}$, domain: $(-\infty, 0) \cup(0, \infty)$
(3) Given, $f(x)=4(2 x-1)^{3}+7$, find $h(x)$ and $g(x)$ such that $f(x)=(h \circ g)(x)$.

Solution: $(h \circ g)(x)=4(2 x-1)^{3}+7$ if $h(x)=4 x^{3}+7$, and $g(x)=2 x-1$
(4) For $f(x)=2 x+1$ and $g(x)=\sqrt{x}$, find the domain of $(g \circ f)(x)$.

Solution: $(g \circ f)(x)=\sqrt{2 x+1}$, domain: $\left[-\frac{1}{2}, \infty\right)$
(5) The surface area, S, of a cone is given by the formula, $S=\pi r^{2}+\pi r \sqrt{h^{2}+r^{2}}$. If the height, h, is four times the radius, r, find the function $S(r)$, the surface area as a function of the radius, and $S(h)$, the surface area as a function of the height.
Solution: $S(r)=\pi r^{2}(1+\sqrt{17})$
$S(h)=\frac{1}{4} \pi h^{2}\left(\frac{1}{4}+\sqrt{1+\frac{1}{16}}\right)$

