COLLEGE ALGEBRA QUIZ

(1) Determine the equation of a function which looks like the squaring function, $f(x)=$ x^{2}, but shifted left 5 units and up 3 units.
(a) $f(x)=(x+5)^{2}+3$
(b) $f(x)=(x-5)^{2}+3$
(c) $f(x)=(x+3)^{2}+5$
(d) $f(x)=(x+3)^{2}-5$
(2) Determine the equation of a function which looks like the cubing function, $f(x)=$ x^{3}, but reflected across the x-axis, and stretched vertically by a factor of 2 .
(a) $f(x)=-2 x^{3}$
(b) $f(x)=2 x^{3}$
(c) $f(x)=-8 x^{3}$
(d) $f(x)=8 x^{3}$
(3) Below is the graph $y=f(x)$. Use this to answer (a),(b),(c), and (d).

(a) Which of the following is the graph of $y=f(x-2)$?
(i)

(ii)
(iii)

(iv)

(b) Which of the following is the graph of $y=2+f(x)$?
(i)

(ii)

(iv)

(c) Which of the following is the graph of $y=-3 f(x)$?

(ii)
(i)

(iv)

(d) Which of the following is the graph of $y=f(3 x)$?

$$
f(x)
$$

(i)

(ii)
$f(x)$
(iii)

(iv)

(4) Explain how the graph of $y=\frac{-1}{2} f(x+1)$ is obtained from the graph of $y=f(x)$.
(a) Shrink the graph of $y=f(x)$ vertically by a factor of $\frac{1}{2}$, reflect the graph across the x -axis, then shift left 1 unit.
(b) Stretch the graph of $y=f(x)$ vertically by a factor of $\frac{1}{2}$, reflect the graph across the y -axis, then shift right 1 unit.
(c) Shrink the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{2}$, reflect the graph across the x -axis, then shift right 1 unit.
(d) Shrink the graph of $y=f(x)$ vertically by a factor of $\frac{1}{2}$, reflect the graph across the y-axis, then shift up 1 unit.
(e) Stretch the graph of $y=f(x)$ vertically by a factor of $\frac{1}{2}$, reflect the graph across the x -axis, then shift down 1 unit.
(5) Below is the graph of the function f. If $g(x)=-\frac{1}{4} f(x)+1$, then which of the following graphs belong to $g(x)$.

(a)

(b)

(d)

