1

- (1) Given $f(x) = 7x^2 3 + 0.75x^4 3x^3$,
 - (a) Determine the leading term,
 - (b) Determine the leading coefficient,
 - (c) Determine the degree of the polynomial.
 - (d) Determine if it is constant, linear, quadratic, cubic or quartic.

- (2) Given h(x) = -36,
 - (a) Determine the leading term,
 - (b) Determine the leading coefficient,
 - (c) Determine the degree of the polynomial.

(d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:

(a) -36, (b) -36, (c) 0, (d) constant

 $\mathbf{2}$

- (3) Given g(x) = 7 0.5x,
 - (a) Determine the leading term,
 - (b) Determine the leading coefficient,
 - (c) Determine the degree of the polynomial.
 - (d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:

(a) -0.5x, (b) -0.5, (c) 1, (d) linear g(x) 10 g(x) = 7 - 0.5x g(x) = 7 - 0.5x $-4 -2 \ 0 2 \ 4$

- (4) Given f(x) = ¹/₄x³ 2x + 3,
 (a) Determine the leading term,
 (b) Determine the leading coefficient,
 - (c) Determine the degree of the polynomial.
 - (d) Determine if it is constant, linear, quadratic, cubic or quartic.

4

(5) Using the leading term test, and $f(x) = -\frac{1}{3}x^4 + 4x^2 + x - 6$, determine the end behavior of the graph of f(x). Solution: Both ends point down, or as $x \to \infty$, $f(x) \to -\infty$, and as $x \to -\infty$, $f(x) \to -\infty$ This is because the degree of the polynomial, n = 4, is even and the leading coefficient, $a_n = -\frac{1}{3}$ is < 0 $\begin{array}{c} f(x) \\ \hline 10 \\ \hline \end{array}$

(6) Using the leading term test, and f(x) = x⁵ + 4x³ - x² + 3x + 4, determine the end behavior of the graph of f(x).
Solution: Left side of graph points down and right side of graph points up, or as x → ∞, f(x) → ∞, and as x → -∞, f(x) → -∞

This is because the degree of the polynomial, n = 5, is odd and the leading coefficient, $a_n = 1$ is > 0

- (7) Given, $g(x) = (x \frac{1}{4})(x + 5)^3(x 3)^2$, find the zeros of g(x) and state the multiplicity of each. Solution: $\frac{1}{4}$, multiplicity 1; -5, multiplicity 3; 3, multiplicity 2.
- (8) Given, f(x) = x⁴ 37x² + 36, find the zeros of f(x) and state the multiplicity of each.
 Solution: ±1 and ±6, everything is multiplicity 1.
- (9) Given, h(x) = x³ + 5x² 9x 45, find the zeros of h(x) and state the multiplicity of each.
 Solution: -5, ±3, everything has multiplicity 1.
- (10) If P dollars is invested for t years at an interest rate of r, compounded annually, then A dollars will be the final amount.

$$A = P(1+r)^t$$

(a) Find the interest rate r if \$2500 grows to \$2704 in 2 years.

(b) Find the interest rate r if \$75,000 grows to \$100,000 in 4 years. Solution: (a)4.0%, (b) 7.5%

6