## COLLEGE ALGEBRA QUIZ

(1) Given $f(x)=7 x^{2}-3+0.75 x^{4}-3 x^{3}$,
(a) Determine the leading term,
(b) Determine the leading coefficient,
(c) Determine the degree of the polynomial.
(d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:
(a) $0.75 x^{4}$, (b) 0.75 , (c) 4 , (d) quartic

(2) Given $h(x)=-36$,
(a) Determine the leading term,
(b) Determine the leading coefficient,
(c) Determine the degree of the polynomial.
(d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:
(a) $-36,(\mathrm{~b})-36$, (c) 0 , (d) constant $h(x)$

(3) Given $g(x)=7-0.5 x$,
(a) Determine the leading term,
(b) Determine the leading coefficient,
(c) Determine the degree of the polynomial.
(d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:
(a) $-0.5 x$, (b) -0.5 , (c) 1 , (d) linear

$$
g(x)
$$


(4) Given $f(x)=\frac{1}{4} x^{3}-2 x+3$,
(a) Determine the leading term,
(b) Determine the leading coefficient,
(c) Determine the degree of the polynomial.
(d) Determine if it is constant, linear, quadratic, cubic or quartic.

Solution:
(a) $\frac{1}{4} x^{3}$, (b) $\frac{1}{4}$, (c) 3 , (d) cubic
$f(x)$

(5) Using the leading term test, and $f(x)=-\frac{1}{3} x^{4}+4 x^{2}+x-6$, determine the end behavior of the graph of $f(x)$.
Solution: Both ends point down,
or as $x \rightarrow \infty, f(x) \rightarrow-\infty$, and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
This is because the degree of the polynomial, $\mathrm{n}=4$, is even and the leading coefficient, $a_{n}=-\frac{1}{3}$ is $<0$
$f(x)$

(6) Using the leading term test, and $f(x)=x^{5}+4 x^{3}-x^{2}+3 x+4$, determine the end behavior of the graph of $f(x)$.
Solution: Left side of graph points down and right side of graph points up,
or as $x \rightarrow \infty, f(x) \rightarrow \infty$, and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
This is because the degree of the polynomial, $\mathrm{n}=5$, is odd and the leading coefficient, $a_{n}=1$ is $>0$

(7) Given, $g(x)=\left(x-\frac{1}{4}\right)(x+5)^{3}(x-3)^{2}$, find the zeros of $g(x)$ and state the multiplicity of each.
Solution: $\frac{1}{4}$, multiplicity $1 ;-5$, multiplicity $3 ; 3$, multiplicity 2 .
(8) Given, $f(x)=x^{4}-37 x^{2}+36$, find the zeros of $f(x)$ and state the multiplicity of each.
Solution: $\pm 1$ and $\pm 6$, everything is multiplicity 1 .
(9) Given, $h(x)=x^{3}+5 x^{2}-9 x-45$, find the zeros of $h(x)$ and state the multiplicity of each.
Solution: $-5, \pm 3$, everything has multiplicity 1 .
(10) If P dollars is invested for t years at an interest rate of $r$, compounded annually, then A dollars will be the final amount.

$$
A=P(1+r)^{t}
$$

(a) Find the interest rate $r$ if $\$ 2500$ grows to $\$ 2704$ in 2 years.
(b) Find the interest rate $r$ if $\$ 75,000$ grows to $\$ 100,000$ in 4 years.

Solution: (a) $4.0 \%$, (b) $7.5 \%$

