COLLEGE ALGEBRA QUIZ

(1) What is the maximum number of x -intercepts that the graph of $P(x)=x^{5}-x^{8}$ can have?
Solution: 8
This question is part of a multi-part question. They must answer the first part before they are given the second part. Since we want the student to be able to evaluate the zeros, y-intercept, end behavior just from seeing the equation - then use that information to determine the appropriate graph.
(2) Given, $f(x)=-x^{4}+3 x^{3}$.
(a) Determine the end behavior, Solution:
as $x \rightarrow-\infty, f(x) \rightarrow-\infty ; x \rightarrow \infty, f(x) \rightarrow-\infty$
(b) Determine the zeros,

Solution: zeros are 0 and 3
(c) Determine the y-intercept.

Solution: $(0,0)$
(d) Which of the following is the graph of $f(x)$.
(i)

(ii)

(iii)

(3) Given, $g(x)=(x-1)^{3}\left(x+\frac{1}{3}\right)^{2}$.
(a) Determine the end behavior, Solution:
as $x \rightarrow-\infty, g(x) \rightarrow-\infty ; x \rightarrow \infty, g(x) \rightarrow \infty$
(b) Determine the zeros,

Solution: zeros are 1 and $-\frac{1}{3}$
(c) Determine the y-intercept.

Solution: $\left(0,-\frac{1}{9}\right)$
(d) Which of the following is the graph of $f(x)$.
(i)

(ii)

(iii)

(iv)

(4) Given, $h(x)=x^{3}+4 x^{2}-x-4$.
(a) Determine the end behavior, Solution:
as $x \rightarrow-\infty, h(x) \rightarrow-\infty ; x \rightarrow \infty, h(x) \rightarrow \infty$
(b) Determine the zeros,

Solution: zeros are ± 1 and -4
(c) Determine the y-intercept.

Solution: ($0,-4$)
(d) Which of the following is the graph of $f(x)$.

(ii)

(iii)

(iv)

(5) Determine the zeros of $f(x)=x^{4}-3 x^{3}-9 x^{2}-5 x$, then answer the following questions,
(a) On which interval(s) is $f(x)$ positive (above the x axis)?

Solution: $(-\infty,-1),(-1,0)(5, \infty)$
(b) On which interval(s) is $f(x)$ negative (below the x axis)?

Solution: $(0,5)$
(6) Using the intermediate value theorem, does $f(x)=5 x^{2}-4 x-6$ have a zero between 1 and 2 ?
Solution: $\mathrm{f}(1)=-5, \mathrm{f}(2)=6$. Since $1 \neq 2$, and $\mathrm{f}(1)$ and $\mathrm{f}(2)$ have opposite signs, then there is at least one real zero between 1 and 2 .
(7) Using the intermediate value theorem, does $g(x)=x^{3}-3 x^{2}+0.2 x+5$ have a zero between -1 and 1 ?
Solution: $\mathrm{g}(-1)=0.8, \mathrm{~g}(1)=3.2$. Since $-1 \neq 1$, but $\mathrm{g}(-1)$ and $\mathrm{g}(1)$ have the same signs, then the intermediate value theorem cannot be used to determine if there are any zeros between -1 and 1 .

