COLLEGE ALGEBRA QUIZ

(1) Use the factor theorem to factor $f(x)=x^{4}+x^{3}-3 x^{2}-5 x-2$.

Solution: $(x+1)^{3}(x-2)$
(2) Using long division, divide $f(x)$ by $d(x)$.

Given: $f(x)=7 x^{3}-12 x^{2}+4 x-1, d(x)=x-3$
Then express $f(x)$ as, $f(x)=d(x) \cdot q(x)+r(x)$.
Where $d(x)$ is the divisor, $q(x)$ is the quotient, and $r(x)$ is the remainder.
Solution: $f(x)=(x-3)\left(7 x^{2}+16 x+52\right)+155$
(3) Using long division, divide $f(x)$ by $d(x)$.

Given: $f(x)=x^{4}-5 x^{3}+x+2, d(x)=x+1$
Then express $f(x)$ as, $f(x)=d(x) \cdot q(x)+r(x)$.
Where $d(x)$ is the divisor, $q(x)$ is the quotient, and $r(x)$ is the remainder.
Solution: $f(x)=(x+1)\left(x^{3}-6 x^{2}+6 x-5\right)+7$
(4) Using synthetic division, divide $x^{3}+4 x^{2}-3 x-110$ by $x-5$.
(a) What is the quotient?

Solution: $x^{2}+9 x+42$
(b) What is the remainder?

Solution: 100
(5) Using synthetic division, divide $x^{4}+4 x^{3}+4 x^{2}+4 x+3$ by $x+3$.
(a) What is the quotient?

Solution: $x^{3}+x^{2}+x+1$
(b) What is the remainder?

Solution: 0
(6) Using synthetic division, divide $x^{5}-2 x+1$ by $x+1$.
(a) What is the quotient?

Solution: $x^{4}-x^{3}+x^{2}-x-1$
(b) What is the remainder?

Solution: 2
(7) Find $f(-2)$, given $f(x)=x^{3}+2 x^{2}-10 x+15$. Use synthetic division.

Solution: 35
(8) Find $f(-3)$, given $f(x)=x^{4}-81$. Use synthetic division. Solution: 0
(9) Find $f(-10)$, given $f(x)=x^{5}-x^{4}+4 x^{3}-x^{2}+x-200$. Use synthetic division. Solution: -114,310
(10) Using synthetic division, determine whether $-i$, and -6 are zeros of $f(x)$. Given, $f(x)=x^{3}-6 x^{2}+x-6$.
Solution: Yes and No.
(11) Using synthetic division, determine whether 1 , and -1 are zeros of $f(x)$. Given, $f(x)=x^{4}-4 x^{3}-3 x^{2}+14 x+12$. Solution: No and Yes.

