COLLEGE ALGEBRA QUIZ

(1) Express $2 \cdot \log _{A}(X)-4 \cdot \log _{A}(Y)+\frac{1}{3} \cdot \log _{A}(Z)$ as a single logarithm and simplify if possible.
Solution: $\log _{A}\left(\frac{X^{2} \cdot \sqrt[3]{Z}}{Y^{4}}\right)$
(2) Express $\ln \left(x^{3}-27\right)-\ln \left(x^{2}+3 x+9\right)+\ln (x+3)$ as a single logarithm and simplify if possible.
Solution: $\ln \left(x^{2}-9\right)$
(3) Express $\ln \left(\sqrt[4]{x y^{2}}\right)$ as a sum and difference of logarithms.

Solution: $\frac{1}{4} \cdot \ln (x)+\frac{1}{2} \cdot \ln (y)$
(4) Express $\log \left(\sqrt[3]{\frac{W^{2}}{R}}\right)$ as a sum and difference of logarithms.

Solution: $\frac{2}{3} \cdot \log (W)-\frac{1}{3} \cdot \log R$
(5) Compute $\log _{x}(3)$ given $\log _{x}(2)=0.3562, \log _{x}(5)=0.8271$, and $\log _{x}(6)=0.9208$. Solution: 0.5646
(6) Compute $\log _{x}(60)$ given $\log _{x}(2)=0.3562, \log _{x}(5)=0.8271$, and $\log _{x}(6)=0.9208$. Solution: 2.1041
(7) Compute $\log _{x}\left(\frac{1}{2}\right)$ given $\log _{x}(2)=0.3562, \log _{x}(5)=0.8271$, and $\log _{x}(6)=0.9208$. Solution: 0.3562
(8) Compute $\log _{x}(\sqrt[3]{2})$) given $\log _{x}(2)=0.3562, \log _{x}(5)=0.8271$, and $\log _{x}(6)=0.9208$. Solution: 0.1187
(9) Simplify $\ln \left(e^{-3 k}\right)$.

Solution: $-3 k$
(10) Simplify $\log _{5}\left(5^{-2 t}\right)$.

Solution: $-2 t$

