COLLEGE ALGEBRA QUIZ

- (1) Express $2 \cdot log_A(X) 4 \cdot log_A(Y) + \frac{1}{3} \cdot log_A(Z)$ as a single logarithm and simplify if possible. Solution: $log_A(\frac{X^2 \cdot \sqrt[3]{Z}}{Y^4})$
- (2) Express $ln(x^3 27) ln(x^2 + 3x + 9) + ln(x + 3)$ as a single logarithm and simplify if possible. Solution: $ln(x^2 - 9)$
- (3) Express $ln(\sqrt[4]{xy^2})$ as a sum and difference of logarithms. Solution: $\frac{1}{4} \cdot ln(x) + \frac{1}{2} \cdot ln(y)$
- (4) Express $log(\sqrt[3]{\frac{W^2}{R}})$ as a sum and difference of logarithms. Solution: $\frac{2}{3} \cdot log(W) - \frac{1}{3} \cdot logR$
- (5) Compute $log_x(3)$ given $log_x(2) = 0.3562$, $log_x(5) = 0.8271$, and $log_x(6) = 0.9208$. Solution: 0.5646
- (6) Compute $log_x(60)$ given $log_x(2) = 0.3562$, $log_x(5) = 0.8271$, and $log_x(6) = 0.9208$. Solution: 2.1041
- (7) Compute $log_x(\frac{1}{2})$ given $log_x(2) = 0.3562$, $log_x(5) = 0.8271$, and $log_x(6) = 0.9208$. Solution: 0.3562
- (8) Compute $log_x(\sqrt[3]{2})$ given $log_x(2) = 0.3562$, $log_x(5) = 0.8271$, and $log_x(6) = 0.9208$. Solution: 0.1187
- (9) Simplify $ln(e^{-3k})$. Solution: -3k
- (10) Simplify $log_5(5^{-2t})$. Solution: -2t