yy(6, 6)(6, 6)xx(b) (a) yy(6, 6)xx• (6, -6) (c) (d)

1

(1) Which of the following graphs belong to $y^2 = 6x$. Solution: (a)

(2) Which of the following graphs belong to $x^2 - 10x + 4y = 0$.

- (3) Given the directrix $y = \frac{5}{2}$ and focus $(0, \frac{-5}{2})$, find an equation of the parabola. Solution: (a) (a) $x^2 = -10y$ (b) $y^2 = -10x$ (c) $y^2 = \frac{1}{4}(x + \frac{5}{2})^2$ (d) $x^2 = -6y$

 $\mathbf{2}$

- (4) Find the focus, the vertex, and the directrix for the parabola, $y^2 = -8x$ Solution: (a)
 - (a) focus: (-2, 0); vertex: (0, 0); directrix: x = 2
 - (b) focus: (-3, 0); vertex: (0, 0); directrix: x = 3
 - (c) focus: (-8, 0); vertex: (0, 0); directrix: x = 8
 - (d) focus: (-2, 0); vertex: (-2, 0); directrix: x = -2
- (5) Find the focus, the vertex, and the directrix for the parabola, $x^2 + 8x + 2y + 2 = 0$ Solution: (a)

 - (a) focus: $(-4, \frac{13}{2})$; vertex: (-4, 7); directrix: $y = \frac{15}{2}$ (b) focus: $(-5, \frac{15}{2})$; vertex: (-5, 8); directrix: $y = \frac{17}{2}$ (c) focus: $(4, \frac{-15}{2})$; vertex: (4, -7); directrix: $y = \frac{-13}{2}$ (d) focus: $(5, \frac{-17}{2})$; vertex: (5, -8); directrix: $y = \frac{-15}{2}$
- (6) A parabola has a cross section that is 3 units wide at the opening and 2.5 units deep at the vertex. What is the distance from the vertex to the focus? Solution: (a)

