COLLEGE ALGEBRA QUIZ

(1) Which of the following is the graph of $y^{2}=16-x^{2}$?

Solution: (a)
(a)

(b)

(c)

(d)

(2) Which of the following is the graph of $2 x^{2}+7 y^{2}=14$?
(a)

(b)

(c)

(d)

(3) Which of the following is the graph of $x^{2}+y^{2}-6 x+2 y=6$?
(a)

(b)

(c)

(d)

(4) Which of the following is the graph of $4 x^{2}+y^{2}-8 x-2 y=-1$?
(a)

(b)

(c)

(d)

(5) What is the center, vertices, and the foci of the ellipse,

$$
9 x^{2}+36 y^{2}-72 x+72 y-144=0
$$

Solution: (a)
(a) Center: $(4,-1)$;

Vertices: $(-2,-1),(10,-1)$;
Foci: $(4-3 \sqrt{3},-1),(4+3 \sqrt{3},-1)$
(b) Center: $(4,-1)$;

Vertices: $(4,-7),(4,5)$;
Foci: $(4,-1-3 \sqrt{3}),(4,-1+3 \sqrt{3})$
(c) Center: $(-1,4)$;

Vertices: $(-7,4),(5,4)$;
Foci: $(-1-3 \sqrt{3}, 4),(-1+3 \sqrt{3}, 4)$
(d) Center: $(-1,4)$;

Vertices: $(-1,-2),(-1,10)$;
Foci: $(-1,4-3 \sqrt{3}),(-1,4+3 \sqrt{3})$
(6) Which of the following is the graph of $9 x^{2}+36 y^{2}-72 x+72 y-144=0$ (The ellipse in question 5)?
Solution: (a)
(a)

(b)

(c)

(d)

(7) Which of the following is the equation of an ellipse with vertices at $(0,-7)$ and $(0,7)$ if the length of the minor axis is 8 ?
Solution: (a)
(a) $\frac{x^{2}}{16}+\frac{y^{2}}{49}=1$
(b) $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$
(c) $\frac{x^{2}}{16}+\frac{y^{2}}{64}=1$
(d) $\frac{x^{2}}{64}+\frac{y^{2}}{16}=1$
(8) Which of the following is true regarding a circle and an ellipse, if they are both represented by the following equation?

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Solution: (a)
(a) The center of the circle and the ellipse is at the origin. The radius of the circle is 1 . $a=b=1$ for the circle, but for the ellipse, $a>b>0$.
(b) The center of the circle and the ellipse is at the origin. The radius of the circle is $1 . a=b=1$ for the circle and the ellipse.
(c) The center of the circle and the ellipse is at the origin. The radius of the circle is $1 . a>b>0$ for the circle and the ellipse.
(d) The center of the circle and the ellipse is at the origin. The radius of the circle is $1 . a>b>0$ for the circle, but for the ellipse, $a=b=1$.

