COLLEGE ALGEBRA QUIZ

(1) Which of the following is true regarding an infinite geometric series with $r=-1.1$? Solution: (a), the sum of an infinite geometric series only exists if $|r|<1$.
(a) It does not have a limit.
(b) It does have a limit.
(2) For a geometric sequence, $a_{1}=-3, r=2$, and $a_{n}=-48$. Find n and S_{n}. Solution: $n=5, S_{n}=-23.25$
(3) For a geometric sequence, $r=\frac{1}{3}$ and $S_{4}=\frac{40}{3}$. Find a_{1} and a_{5}.

Solution: $a_{1}=9, a_{5}=\frac{1}{9}$
(4) Find the sum, if it exists, of the following infinite geometric series.

$$
25+32.5+42.25+54.925
$$

Solution: Does Not Exist, $\mathrm{r}=1.3$, the sum of an infinite geometric series only exists if $|r|<1$. In this case, the series is increasing without bounds.
(5) Find the sum, if it exists, of the following infinite geometric series.

$$
0.15+0.0015+0.000015+\ldots
$$

Solution: $\frac{5}{33}$
(6) Find the sum, if it exists, of the following infinite geometric series.

$$
\frac{1}{2}-\frac{1}{8}+\frac{1}{32}-\ldots
$$

Solution: $\frac{2}{5}$
(7) Find fraction notation for $3 . \overline{45}$.

Solution: $\frac{38}{11}$
(8) A gumball is dropped to the floor from a height of 23 ft . If the gumball rebounds $\frac{13}{20}$ of the distance that it falls each time, then how far up and down will it have traveled when it hits the floor for the 7th time?
Solution: 101.99 ft
(9) A parent makes a savings account for their son when he is four years old, they deposit $\$ 200$ each month into his savings account on which interest is compounded annually at 0.5%. Find the amount of the annuity when the boy turns eighteen. Solution: $\$ 34,714.14$
(10) Suppose that the government is supplying a city with $\$ 300,000,000$ in aid money to improve public transit, remove blight, and hire police and firefighters. If 83% of this amount is spent again on this city, and so on, what is the total effect on the economy?
Solution: \$1, 764, 705, 882
(11) Write the first 3 terms of the infinite geometric series with $r=\frac{-1}{5}$ and $S_{\infty}=\frac{5}{18}$. Solution: $\frac{1}{3}, \frac{-1}{15}, \frac{1}{75}$

